Taking It for a Test Drive: A Hybrid Spatio-Temporal Model for Wildlife Poaching Prediction Evaluated Through a Controlled Field Test
نویسندگان
چکیده
Worldwide, conservation agencies employ rangers to protect conservation areas from poachers. However, agencies lack the manpower to have rangers effectively patrol these vast areas frequently. While past work has modeled poachers’ behavior so as to aid rangers in planning future patrols, those models’ predictions were not validated by extensive field tests. In this paper, we present a hybrid spatio-temporal model that predicts poaching threat levels and results from a five-month field test of our model in Uganda’s Queen Elizabeth Protected Area (QEPA). To our knowledge, this is the first time that a predictive model has been evaluated through such an extensive field test in this domain. We present two major contributions. First, our hybrid model consists of two components: (i) an ensemble model which can work with the limited data common to this domain and (ii) a spatio-temporal model to boost the ensemble’s predictions when sufficient data are available. When evaluated on real-world historical data from QEPA, our hybrid model achieves significantly better performance than previous approaches with either temporally-aware dynamic Bayesian networks or an ensemble of spatially-aware models. Second, in collaboration with the Wildlife Conservation Society and Uganda Wildlife Authority, we present results from a five-month controlled experiment where rangers patrolled over 450 sq km across QEPA. We demonstrate that our model successfully predicted (1) where snaring activity would occur and (2) where it would not occur; in areas where we predicted a high rate of snaring activity, rangers found more snares and snared animals than in areas of lower predicted activity. These findings demonstrate that (1) our model’s predictions are selective, (2) our model’s superior laboratory performance extends to the real world, and (3) these predictive models can aid rangers in focusing their efforts to prevent wildlife poaching and save animals.
منابع مشابه
Spatio-temporal Model for Wildlife Poaching Prediction Evaluated through a Controlled Field Test in Uganda
Worldwide, conservation agencies employ rangers to protect conservation areas from poachers. However, agencies lack the manpower to have rangers effectively patrol these vast areas frequently. While past work has modeled poachers behavior so as to aid rangers in planning future patrols, those models predictions were not validated by extensive field tests. In my thesis, I present a spatio-tempor...
متن کاملEvaluation of Predictive Models for Wildlife Poaching Activity through Controlled Field Test in Uganda
Worldwide, conservation agencies employ rangers to protect conservation areas from poachers. However, agencies lack the manpower to have rangers effectively patrol these vast areas frequently. While past work modeled poachers behavior so as to aid rangers in planning future patrols, those models predictions were not validated by extensive field tests. We conducted two rounds of field tests in U...
متن کاملContext-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network
Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...
متن کاملEvaluation of Tests for Separability and Symmetry of Spatio-temporal Covariance Function
In recent years, some investigations have been carried out to examine the assumptions like stationarity, symmetry and separability of spatio-temporal covariance function which would considerably simplify fitting a valid covariance model to the data by parametric and nonparametric methods. In this article, assuming a Gaussian random field, we consider the likelihood ratio separability test, a va...
متن کاملCloudy with a Chance of Poaching: Adversary Behavior Modeling and Forecasting with Real-World Poaching Data
Wildlife conservation organizations task rangers to deter and capture wildlife poachers. Since rangers are responsible for patrolling vast areas, adversary behavior modeling can help more effectively direct future patrols. In this innovative application track paper, we present an adversary behavior modeling system, INTERCEPT (INTERpretable Classification Ensemble to Protect Threatened species),...
متن کامل